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Numerical studies on the dynamics of the globally coupled maps with sequential updating
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A system of globally coupled logistic maps with sequential updating is analyzed numerically. It is found that
deterministic asynchronous updating schemes may have dramatical influences on the dynamical behaviors of
globally coupled systems. Transitions from spatiotemporal chaos to spatially organized states are observed as
the coupling parameter varies. It is shown that the model system may exhibit a variety of collective properties
such as clustering, traveling wave patterns, and spatial bifurcation cascades.

PACS numbds): 05.45.Ra, 47.54.r, 84.35:+i, 87.10+¢€

The study of large assemblies of chaotic elements that casize). The logistic mad f(x)=1—ax?], is chosen as a pro-
spontaneously evolve to a state of large scale synchronizaetype for a system of globally coupled chaotic system. The
tion is important not only for understanding nonlinear dy- sequential updating scheme is then defined by the following
namical systems with many degrees of freedom, but alsglobal feedback:
from the viewpoint of potential applications in biological
information processing, evolutionary dynamics, and econom- o[ N
ics [1-4]. Fr=y PRICINEDIR IS )

The globally coupled mafGCM), introduced by Kaneko k=1 k=i
[5], exhibits certain interesting dynamical properties such as
clustering of synchronization, suppression of chaos, etc., It is noticed that, by Eq(1), the feedback tern@2) con-
which are often observed in many real globally coupled systains both global and local information. It also introduces an
tems. However, in many mathematical models for globallyupdating wave that travels along the system at a velocity of
coupled systems, the updating mechanism is assumed to bee site per iteration. This kind of model system emphasizes
synchronous, while in real neural networks, updating mechathe importance of the finite propagation velocity of the inter-
nisms are, in some occasions, asynchronous. It is, thereforagtion, assuming that the reaction is instantaneous. The sys-
interesting to investigate what influences the asynchronoutem has certain intrinsic spatial inhomogeneity.
updating schemes may have on the collective behaviors of We have performed extensive numerical simulations on
the globally coupled systems. Recently, a stochastic asyrthe globally coupled logistic maps with sequential updating.
chronous updating mechanism was introduced into the usu&Ve find that the different distributions of random initial con-
GCM [5]. The clustering phenomenon is eliminated due toditions may lead to qualitatively distinct dynamical behavior
the element-dependent global feedback onto the individuadf the model system under consideration. For the conve-
elements. An inverse bifurcation cascade with couplingnience of simplicity, we focus our attention on the uniform
strength is observed. It is argued that the disappearance distributions of initial conditions, i.e., the amplitude of each
clustering and the suppression of chaos is due to the internalte is chosen randomly from the intervat (p<xy<7) (i
noises induced by the stochastic asynchronous updating. =1,2,... N) with 0<z=1. It is possible that more diver-

In this paper, we study the collective behavior of an en-sified dynamical behaviors can be found if the different ele-
semble of globally coupled logistic maps with sequential up-ment is allowed to have a distinct distribution for its initial
dating through numerical simulations. By sequential updatcondition.
ing, we mean that at each iteration step, the state of the In Fig. 1 we show the bifurcation diagrams for the evolu-
individual elements is updated according to a given sequenagon of a single element as a function @ffor N=2000 and
and the order of the elements in this sequence is fixed during=1.8. Figure 1a) shows the evolution of a single element
the evolution. Our model system may be described by theés a function of the coupling constanfor »=1. It is seen
following GCM: that this result is quite similar to that found in RES]. Note

1— oy i i e that here we have used the same initial conditions foeall
N (1=e)f(xp)+eFy, i i=] which leads to well-defined bifurcation branches. Otherwise
n+j/N X if i#j’ small dispersions in the bifurcation branches may be ob-
served due to the presence of coexisting multistable states
where € is the coupling constanty is a discrete time step, that have only quantitative differences in their amplitudes. It
and i is the index of an elementi€1,2,... N=system is obvious that the coupled system may have many coexist-
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behaviors of a single element chosen from the coupled system of
FIG. 1. Bifurcation diagrams for a system Wf=2000 logistic  totally N=1000 maps.

maps, as a function of the coupling constanfThe diagrams are

constructed from the evolution of a randomly chosen single map, ] ) )
with a=1.8 for (8) =1 and(b) »=0.67. The same initial condi- Stressed that the attractors displayed in the phase diagrams

tions are used for each value efn order to reduce the fluctuation are, in principle, attractors of a single element.
due to the coexisting multistable attractors. In Fig. 2@), we plot the variety of the dynamical behav-
iors for »=1. It is seen that there exists a well-defined

ing multistable states. However, for our model system th?oundary between the fixed point and period-2 zones, which
number of quantitatively different coexisting multistable at- tUrns to the same boundary line defined in Réi. Figure
tractors is reduced as the system sitds increased. Our 2(0) exhibits the possible phases far=0.67. A traveling
numerical results reveal that qualitatively different attractord?@ttérn phase appears for sufficiently large global coupling
of the coupled system may coexist for systems with smalfonstante. In fact, this phase is already present in Figa)2
sizes. but with small basins. When the system operates in this re-
There are several crucial differences between our moddliMme, €ach element of the coupled system is dynamically

system and that investigated in RE). First, our system is equivalen'F with a finite time Iag_ among the diﬁere_:nt ele-
deterministic and spatially inhomogeneous, while the lattef€Nts. It is found that the velocity of the propagating pat-
system has intrinsic noise and is spatially homogeneous, 3™MS IS a_funcnon Of, whlch_ls sma!ler than the velocity of
least statistically. In view of the spatial inhomogeneity, it is the updating. When further increasiegthe system falls on
clear that a different single element may exhibit relativelytwo-cluster period-2 attractors, which is a typical feature of
different bifurcation scenarios. Second, in all previouslyglobally coupled systems, though in our case, the cluster is
studied globally coupled systems the global feedback is ifi€fined only through the phases of the constituents.
principle a mean-field quantity, while in our system it is not. ~ Figure 3a) shows typical spatial bifurcation cascades cor-
This difference is responsible for some unusual propertie§¢Sponding to the spatial frozen phase, in which the the spa-
observed only in our model system and makes the meariial homogeneous is broken and different elements may show
field-like analysis difficult and even meaningless. Figuity 1 qualitatively different dynamics. If we characterize the ele-
shows much richer structures of the bifurcation diagramments according to their periods or frequencies, then in the
when 7<1. In this case, as the coupling constanis in-  fegime of frozen spatial pattern we find that the clusters of
creased one may observe the following phagés.Spa- different periods are formed, which are organized to exhibit a
tiotemporal chaos. In this regime, since the coupling is quitesPatial bifurcation pattern, resulting from the interplay of
weak, each site behaves almost independetiily.Spatial ~ global coupling and sequential updating. The clustering is a
frozen patterns. Here the system is spatially inhomogeneou§/pical dynamical behavior in globally coupled systems, in
and different elements may possess different dynamicarhich spatial inhomogeneity is a direct consequence of the
properties. But because of sequential updating there exi&Synchronous updating mechanism. The rather different dy-
certain relations among neighboring site. In fact, spatial biamical features displayed by neighboring elements is in
furcations are observediii) Traveling patterns. The cou- contrast with the intuition that on average the difference of
pling in this regime is strong enough to establish the spatialhe global feedbacle,, on neighboring sites is typically of
homogeneity. Elements at different positions are related bprder 2N, which is very small forN large. Note that the
constant phase difference@y) Periodic orbits. The spa- elements in a periodic cluster can be further divided into
tiotemporal chaos is suppressed by the particular feedbadkoups, each of them consists of those elements that are on
mechanism(2). To better illustrate the quantitative changesthe same periodic branch. To analyze the complicated dy-
in the dynamical behavior asvaries, in Fig. 2 we plot the namics it is natural to expect that such a spatial bifurcation
phase diagrams corresponding to two different initial condi-may arise from a spatial modulation in the global feedback.
tions characterized by. Each phase is calculated by sum- We have also examined the behavior of the global feedback
marizing the behavior of a single elementasnd e vary.  F(x;) and the term (% €)f(x,). It is found that the essen-
For each value o# (the logistic map parameteand e the  tial dynamical features are characterized by the term (1
evolution is calculated for 30000 time steps. It should be—¢€)f(x;), andF(x;,) only provides some quantitative modi-
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FIG. 3. The frozen pattern and the traveling pattern displayed by FIG. 5. The interaction between two subsystems with different

the globally coupled maps with sequential updating. The systentyPes of distributions for initial conditions. The system parameters

parameters are given by=2000,a=1.8, andyp=0.67. The am- areN=1000,a=1.9, ande=0.25.(a) N;=300; (b) N;=400. The

plitudes of the elements, are plotted as a function of space index cfitical valueN =282.

i for (a) e=0.2, and(b) e=0.3.

example, in Fig. 4 we show a breathing pattern dier 1.8,

: : €=0.19, andyp=0.21. A phase transition from static patterns

e s o o ot 2" @ waveling ones takes place a1-0.187, approsmtely
P y brop y ) The sensitivity of the system to the initial conditions is ex-

Another typical dynamical feature of our model system is d b - d " o ft
the existence of traveling patterns, which is displayed in Fig.pose y examining a composed system consisting ot two
arts, each one starting with different initial conditions. For

3(b). In this regime the spatial translation symmetry is re-P . o -
stored. The detailed properties of traveling waves such as tHiustration, we use two extreme distributions of initial con-
velocity, wave form, etc., depend on the system paramatersd't'ons- One is the constant initial condition, i.8,=X, for
ande. For fixeda, the propagation velocity is proportional to all elements. The other is the uniform distribution with

the global coupling constarg(a). It is found that fore =1, i.e.,—1<xy<1. The system parameters are taken to be
> €., the traveling wave begins to form and move along theN=1000, a=1.9, €=0.25, andN;=300 in Fig. %a) and
direction of the updating. The elements of the system ar@;=400 in Fig. §b). As shown previously, the subsystem
strongly correlated with finite phase differences among thems, originally (i.e., N;=N) has a traveling solution, while the
The temporal behavior changes from the breathing waves teubsystemS, has a periodic solution. Although there still
rotating ones, ag varies within the parameter range of the exists the boundary that divides the two subsystems, the re-
traveling patterns. Foe sufficiently large, the system is gtant dynamics is distinct from both the origirglands,
driven into a period-2 cluster state with an appreciable flucy, Fig. 5@). In Fig. 5b) we see that the subsyste® is
tuation among the amplitu_des of individual elements. In Fig'synchronized WithS, .

3(9) we plot these 'dynam'lcal states far 18 6:0'2,' and The findings in this work may have some implications on
7=0.67. Here again we find that the main dynamical P'OP%he information processing in neural networks. It is known

H |
erties come from the the term ﬁf_ﬁ(xn)‘ . ._that the processing of information is scattered among differ-
The (_jep_enc_lence of the_ P'V”am'c_?' behawor on the ChOICgnt areas of the brain and the information may be linked
of the distribution of the initial conditions is remarkable. For L .
through synchronous activities, using temporal codes. Neural
- : networks that are more realistic from the physiological view-
NG j\ "'>\ "% \ q _point, and that_make use _of synchronous o_scillatory beh_av-
A 7 ior, have been introduced in the context of visual processing
[7,8]. That brain activity might be shaped by deterministic
chaos has been suggested by Freeftdnand studied by
using an assemblies of chaotic model neurons in Rf].
le b [ o5 A [ /o) From our numerical simulations, it is observed that the ele-
3/ VaY sV ey ments may be organized to form groups with different dy-
/ namical behaviors, which may be used to perform different
tasks in the information processing. Obviously, our findings
only suggest a possible way of the formation of clusters with
different dynamical features. In order to capture the essential

fications. This fact suggests that one cannot EM) as a

1.0

05

- . s ‘ b properties of information processing of the neuronal systems,
"o 1000 97500 ses00 99500 one has to use more realistic neuron models.
FIG. 4. The breathing patterns fot=2000,a=1.8, e=0.19, This work was supported in part by CONACyT Research

and »=0.21.(a) x!, vsi, and(b) the temporal behavior of an arbi- Project No. 3110P-E9607 and UNAM Dgapa Project No.
trarily chosen elemerit,=987. IN-102597.
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